Testing a 'genes-to-ecosystems' approach to understanding aquatic-terrestrial linkages.
نویسندگان
چکیده
A 'genes-to-ecosystems' approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome-wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These 'after-life' effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic-terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes.
منابع مشابه
Direct and Terrestrial Vegetation-mediated Effects of Environmental Change on Aquatic Ecosystem Processes
Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic ecosystems. The relative importance...
متن کاملMicroalgae in Ecology: Ecosystem Functioning Experiments
Ecosystem functioning is one of the most striking topics in ecological research. All human beings depend on the functioning of ecosystems and the services provided by ecosystems [1]. Ecosystem services provide food from e.g. agriculture and fish as well as clean water and air. Thus, the functioning of ecosystems is a crucial topic of experimental studies in ecology. The first known ecological e...
متن کاملRiverine landscapes: taking landscape ecology into the water
1. Landscape ecology deals with the influence of spatial pattern on ecological processes. It considers the ecological consequences of where things are located in space, where they are relative to other things, and how these relationships and their consequences are contingent on the characteristics of the surrounding landscape mosaic at multiple scales in time and space. Traditionally, landscape...
متن کاملFire and aquatic ecosystems of the western USA: current knowledge and key questions
Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem conservation begins with re...
متن کاملSpecies sorting along a subsidy gradient alters bacterial community stability.
The movement of resources between terrestrial and aquatic habitats has strong effects on ecological processes in recipient ecosystems. Allochthonous inputs modify the quality and quantity of the available resource pool in ways that may alter the composition and stability of recipient communities. Inputs of terrestrial dissolved organic carbon (tDOC) into aquatic ecosystems represent a large inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 23 23 شماره
صفحات -
تاریخ انتشار 2014